欢迎来到清华三亚国际数学论坛

会议申请 学术日历

Workshop on highly efficient numerical methods for kinetic equations

动理学高效数值方法研讨会

会议编号:  M260201

时间:  2026-02-01 ~ 2026-02-07

浏览次数:  90

组织者:   Ruo Li, Zhiting Ma, Yanli Wang

会议介绍

    会议摘要(Abstract)

    Kinetic theory plays a vital role in a wide range of high-tech fields, including space exploration, plasma physics, and microscale flows. However, directly solving the governing equations—such as the Boltzmann equation—remains computationally expensive and often impractical for large-scale systems. To address this challenge, researchers have been developing highly efficient numerical solvers and exploring simplified model alternatives. 

    The numerical difficulties encountered in different application areas vary significantly and are often hard to tackle. Nonetheless, methods developed for the Boltzmann equation are now being extended and applied to related problems, including radiative transfer, plasma, etc. 

    In recent years, research on direct Boltzmann solvers, model reduction techniques, and their diverse applications has become increasingly active. This workshop aims to bring together leading researchers from around the world to present their latest advancements, share insights, and foster collaboration within the kinetic theory community. 

    动理学理论在航天探索、等离子体物理以及微观流动等多个高科技领域中具有重要作用。然而,直接求解其控制方程(如 Boltzmann 方程)在大尺度系统中仍然面临极高的计算成本,往往难以实现。为了解决这一难题,研究人员正在积极开发高效的数值方法,并探索简化模型作为替代方案。

    动理学方程数值求解的难点在不同的应用领域也各自不同。针对 Boltzmann 方程发展的数值方法,也正在逐步扩展应用到相关应用问题,如辐射输运方程,等离子体物理等。

    近年来,关于直接 Boltzmann 求解器、模型约简方法以及数值方法在相关领域的应用研究日益活跃。本次研讨会旨在汇聚来自世界各地的代表性学者,展示其最新研究成果,交流研究经验,促进动理学理论领域的深入合作与发展。


    举办意义(Description of the aim)

    Kinetic theory plays a foundational role in a wide range of fields, including gas dynamics, plasma physics, and radiative transfer, and serves as a critical theoretical underpinning for advanced engineering applications such as inertial confinement fusion and hypersonic vehicle design. A major challenge in this area lies in the inherently multiscale nature of particle transport: the governing equations vary fundamentally across physical regimes, transitioning from the Boltzmann equation at the molecular mean free path scale to the Navier–Stokes equations under continuum assumptions.

    Recent advances in the study of Hilbert’s Sixth Problem have led to a deeper mathematical understanding of the consistency between models across these scales. However, from a numerical perspective, developing algorithms that are both highly accurate and adaptive across different regimes remains a significant open problem in the field of multiscale kinetic computation.

    This workshop aims to highlight recent progress in efficient numerical methods for kinetic equations and to explore their applications in complex engineering systems. It will bring together leading international experts to exchange the latest research developments, address practical computational challenges, and foster collaboration at the intersection of kinetic theory, applied mathematics, and engineering innovation.

    动理学相关研究广泛应用于气体动力学、等离子体物理、辐射传输等多个领域,并在惯性约束聚变、高超音速飞行器等工程技术中发挥着关键支撑作用。动理学中的粒子输运问题具有显著的多尺度特性:随着物理尺度的变化,其控制方程在本质上呈现出从分子自由程尺度下的玻尔兹曼方程,到连续介质假设下的纳维 斯托克斯方程 的逐步过渡。

    近年来,随着对希尔伯特第六问题研究的持续深入,人们在不同尺度控制方程之间一致性的数学理论方面取得了重要进展。然而,在数值计算层面,如何构建同时具备高精度和流域自适应能力的算法,仍是多尺度粒子输运计算领域亟需突破的关键科学问题。

    本次专题研讨会将聚焦于动理学方程的高效数值方法及其在相关工程领域中的应用发展。会议拟邀请多位国际知名学者参会,交流最新研究成果,探讨工程实际问题,推动动理学领域在科学理论与工程应用层面的协同创新与深度融合。


组织者

Ruo Li, Peking University
Zhiting Ma, Beijing Institute of Mathematical Sciences and Applications
Yanli Wang, Beijing Computational Science Research Center

参会人员
会议日程
报告摘要
会议手册
会议总结
精彩瞬间

往期回顾