会议主题:
朗兰兹计划的几何方法
本次研讨会的目的是要了解朗兰兹计划中新开发的几何方法。一方面,朗兰兹队应的很大一部分已经实现了模块化品种的上同调(志村类型和Shtukas的模空间)。另一方面,几何方法比如倒行逆施滑轮理论在朗兰兹程序的解决问题上提供了巨大的作用,最终在Ngo基本引理的证明和在朗兰兹计划的自守的滑轮结构。
该研讨会是由Ngo教授的一系列报告和若干个涵盖最近的几何方面的研究报告组成的。
Synopsis:
Geometric Methods in the Langlands Program
The goal of this workshop is to understand newly developed geometric methods in the Langlands program. On the one hand, a large part of the Langlands correspondence has been realized by the cohomology of modular varieties (Shimura varieties and the moduli spaces of Shtukas). On the other hand, geometric methods such as the theory of perverse sheaves provide powerful tools in solving problems in the Langlands program, culminating in Ngo's proof of the fundamental lemma and the construction of automorphic sheaves in the geometric Langlands program.
The workshop consists of a series of lectures given by Professor Ngo and several research talks covering geometric aspects of the recent progress in the Langlands program.
Ngô Bảo Châu, Chicago University
Xinwen Zhu, Northwestern University
Zhiwei Yun, Stanford University