几何表示论:几何 Satake 及应用研讨会(GRT: Geometric Satake and beyond)

2018-6-28 22:45:49 345

Synopsis and Organizers


This workshop will focus on geometric Satake correspondence, its generalizations and applications. As the classical Satake correspondence is the starting point of the classical Langlands duality, the geometric Langlands program is based on the geometric Satake correspondence. However, its relations and applications to other mathematical subjects go far beyond the original scope. The workshop will in particular touch on the following topics
 --Applications to the classical Langlands program, in particular the recent construction of spectral operators acting on automorphic forms/sheaves, pioneered by V. Lafforgue.
 --Applications to modular representation theory of algebraic groups and related topics (such as Koszul duality for Kac-Moody groups and categorification of affine Hecke algebras).
 --Relations with topics in mathematical physics such as mirror symmetry, gauge theory, etc. In particular, applications of Geometric Satake correspondence to recent development on mathematical definition of Coulomb branches.
 —Various other generalizations, such as Satake isomorphism for Kac-Moody groups and related topics (such as double affine Hecke algebras).
 During the workshop, we hope to bring together experts working on these subjects to further discuss the application of Geometric Satake in representation theory and its interaction with other domains.

 

Organizers

NameUniversity
Bangming DengTsinghua University, China
Peng Shan

Tsinghua University, China

Zhiwei YunYale University, USA
Xinwen Zhu

California Institute of Technology, USA



会议主题

介绍几何Satake 对应及其在其他领域的应用

会议议题

我们计划邀请二十多位国内外几何表示论方面的专家,介绍几何 Satake 对应方面的最新进展以及与其他学科的联系。同时将邀请国内一些专家、青年学者和研究生参加会议,共同探讨几何表示论在国内的发展。

举办意义

几何表示论是国际上当今数学发展的一个新的趋势,与数学的许多其他领域和数学物理等有紧密联系。国内相关研究还处于起步阶段。本系列研讨班对国内几何表示理论今后的发展将起到推动和促进的作用。